A Note on Iwasawa-Type Decomposition

نویسنده

  • Philip Foth
چکیده

In Poisson geometry, the groups SU p, q andAN the upper-triangular subgroup of SL n, with real positive diagonal entries are naturally dual to each other 1 . Therefore, it is important to know the geometry of the orbits of the dressing action. We show that the right dressing action of SU p, q is globally defined on the open subset of the so-called admissible elements of AN see Section 2 . We also show that the admissible elements can be characterized as follows: these are exactly those elements of AN whose symmetrization maps the closure of the positive cone in n into the positive cone. In addition, we establish a useful fact that the set of admissible elements is a multiplicative subset of AN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Average under the Iwasawa Transformation

We derive an averaging property under the Iwasawa decomposition on a semisimple Lie group of noncompact type based on a limiting property of random walks in the Lie group.

متن کامل

Isotropic foliations of coadjoint orbits from the Iwasawa decomposition

Let G be a real semisimple Lie group. The regular coadjoint orbits of G (a certain dense family of top-dimensional orbits) can be partitioned into a finite set of types. We show that on each regular orbit, the Iwasawa decomposition induces a left-invariant foliation which is isotropic with respect to the Kirillov symplectic form. Moreover, the dimension of the leaves depends only on the type of...

متن کامل

On the Iwasawa decomposition of a symplectic matrix

We consider the computation of the Iwasawa decomposition of a symplectic matrix via the QR factorization. The algorithms presented improve on the method recently described by T.-Y. Tam in [Computing Iwasawa decomposition of a symplectic matrix by Cholesky factorization, Appl. Math. Lett. (in press) doi:10.1016/j.aml.2006.03.001]. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

Iwasawa decompositions of split Kac–Moody groups

The Iwasawa decomposition of a connected semisimple complex Lie group or a connected semisimple split real Lie group is one of the most fundamental observations of classical Lie theory. It implies that the geometry of a connected semisimple complex resp. split real Lie group G is controlled by any maximal compact subgroup K. Examples are Weyl’s unitarian trick in the representation theory of Li...

متن کامل

Computing the Iwasawa decomposition of a symplectic matrix by Cholesky factorization

We obtain an explicit Iwasawa decomposition of the symplectic matrices, complex or real, in terms of the Cholesky factorization for positive definite n×n matrices. We also provide a MATLAB program to compute the decomposition. 1. Iwasawa decomposition of the symplectic groups Let G be the real (noncompact) symplectic group [3, p.129] (the notation there is Spn), [4, p.265] G := Spn(R) = {g ∈ SL...

متن کامل

An Asymptotic Result on the A-component in Iwasawa Decomposition

Let G be a real connected semisimple Lie group. For each v′, v, g ∈ G, we prove that lim m→∞ [a(vgv)] = s · b(g), where a(g) denotes the a-component in the Iwasawa decomposition of g = kan and b(g) ∈ A+ denotes the unique element that conjugate to the hyperbolic component in the complete multiplicative Jordan decomposition of g = ehu. The element s in the Weyl group of (G, A) is determined by y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011